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Imaging inverse problems

We are interested in an unknown image x⋆ ∈ Rd .

We measure y ∈ Y, related to x⋆ by some mathematical model.

For example, in many imaging problems

y = Ax⋆ +w ,

for some operator A that is poorly conditioned or rank deficient,
and an unknown perturbation or “noise” w .

The recovery of x⋆ from y is usually not well posed. Additional
information is required in order to deliver meaningful solutions.
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Mathematical imaging frameworks

There are three main mathematical and computational frameworks for
inference in imaging inverse problems:

1 Applied analysis

2 Bayesian statistics.

3 Machine learning.

These frameworks have complementary strengths and weaknesses.

Our aim is a unifying framework of theory, methods, and algorithms
that inherits the benefits of each approach.
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The Bayesian statistical approach

Model x⋆ as a realisation of a r.v. x on Rd . Use the distribution of x
to regularise the problem and promote expected properties.

The observation y is a realisation of a r.v. (y∣x = x⋆).

Inferences about x⋆ from y are derived from the joint distribution of
(x,y) - specified via the decomposition p(x , y) = p(y ∣x)p(x).

This determines the posterior distribution, with density

p(x ∣y) =
p(y ∣x)p(x)

∫Rd p(y ∣x̃)p(x̃)dx̃
,

which models our beliefs about x after observing y = y .
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Bayesian computation

A simple algorithm to compute probabilities and expectations w.r.t.
p(x ∣y) is the Unadjusted Langevin Algorithm (ULA), given by

Xk+1 = Xk + δk∇ log p(y ∣Xk) + δk∇ log p(Xk) +
√
2δkZk+1 ,

where Zk+1 ∼ N (0, Id) and (δk)k∈N is a sequence of step-sizes.

The samples generated by ULA can be used to compute Monte Carlo
estimates of x̂MMSE and perform advanced inferences.

Recall that, given a set of samples X1, . . . ,XM distributed according
to p(x ∣y), we approximate posterior expectations and probabilities

h̄ =
1

M

M

∑
m=1

h(Xm)→ E{h(x)∣y}, as M →∞

M. Pereyra Bayesian imaging methods 5 / 52



Bayesian computation

A stochastic gradient descent (SGD) to compute x̂MAP is given by

Xk+1 = Xk + δk∇ log p(y ∣Xk) + δk∇ log p(Xk) + δkZk+1 ,

again, Zk+1 ∼ N (0, Id) and (δk)k∈N is a sequence of step-sizes.

Given a sequence of non-increasing weights (ωk)k∈N, we iteratively
approximate x̂MAP by

x̄MAP =
∑

M
k=1 ωkXk

∑
M
k=1 ωk

.

ULA and SGD are remarkably well understood and provably
convergent under easily verifiable conditions on p(x ∣y).
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The SDE underpinning ULA and SGD

Recall that ULA and SGD arise from discrete-time approximations of
the Langevin diffusion process

X ∶ dX t =
1

2
∇ log p (X t ∣y)dt + dWt , 0 ≤ t ≤ T , X(0) = x0.

where W is the Brownian motion on Rd .

When x ↦ p(x ∣y) ∈ C1 with x ↦ ∇ log p(x ∣y) Lipschitz continuous, Xt

converges exponentially fast to p(x ∣y) as t →∞.

ULA and SGD stem from a basic Euler approximations of X .

We recommend to use an accelerated approximation of X for
significantly faster convergence (see 10.1137/19M1283719).
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Proximal ULA and SGD computation

When U ∶ x ↦ − log p(x) is convex but not Lipschitz differentiable (or
has a poor Lipschitz constant), we use the proximal ULA and SGD:

Xk+1 = Xk + δk∇ log p(y ∣Xk) +
δk
λ
(proxλU(Xk) −Xk) +

√
2δkZk+1 ,

Xk+1 = Xk + δk∇ log p(y ∣Xk) +
δk
λ
(proxλU(Xk) −Xk) + δkZk+1 .

where instead of ∇ log p(x) we evaluate the proximal operator

proxλU ∶ x ↦ argmin
z∈Rd

U(z) + 1
2λ∥z − x∥

2
2 .

Proximal ULA and SGD target a regularised approximation of p(x ∣y).

λ > 0 controls an (asymptotic) bias vs. convergence speed trade-off.
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The Plug & Play (PnP) approach

PnP methods stem from the observation that

proxλU ∶ x ↦ argmin
x∈Rd

U(z) + 1
2λ∥z − x∥

2
2

can be viewed as a MAP denoiser to recover z from a noisy
observation x ∼ N (z , λI ), when z has marginal p(z)∝ exp{−U(z)}.

Figure: Image denoising with the proximal operator of the TGV pseudo-norm.
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The Plug & Play (PnP) approach

Instead of specifying U explicitly, PnP strategies “plug” a
state-of-the-art denoiser Dϵ ∶ R ↦ R in lieu of ∇ log p(x) or proxλU(x)
in an iterative sampling or optimisation.

For example, in the context of ULA and SGD, one would consider

PnP-ULA ∶ Xk+1 = Xk+δk∇ log p(y ∣Xk)+
δk
ϵ (Dϵ(Xk) −Xk)+

√
2δkZk+1 ,

and

PnP-SGD ∶ Xk+1 = Xk + δk∇ log p(y ∣Xk)+
δk
ϵ (Dϵ(Xk) −Xk)+ δkZk+1 .

Given some training data {x ′i }
M
i=1, training a network to approximate

an optimal MSE denoiser can deliver remarkable results. Why?!
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Neural networks for denoising

Consider a neural network fw ∶ R ↦ R, parametrised by its weights
and biases gathered in w ∈W , where W is some measurable space.

Let {x ′i }
M
i=1 be a training sample from a distribution with density p(x).

We generate {y ′i }
M
i=1 by contaminating {x ′i }

M
i=1 with Gaussian noise

with mean zero and covariance ϵI, i.e., y ′i ∼ N (x
′
i , ϵI).

The optimal MSE denoiser to recover {x ′i }
M
i=1 from {y ′i }

M
i=1 is the

Bayesian estimator E(x ∣y) associated the prior p(x).

During training, when w is set such that

w∗ = argmin
w∈W

M

∑
i=1
∥fw(y

′
i ) − x

′
i ∥

2
2

the resulting network fw∗ approximates the operator y ↦ E(x ∣y).
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This talk

Our aim here is to formalise the Bayesian perspective on inference with
PnP priors and explore foundational questions, e.g.:

1 Under what conditions on Dϵ are Bayesian PnP models well-posed
and amenable to efficient computation? When do the key quantities
of interest exist and inherit the well-posed nature of the model?

2 Can we guarantee the convergence of PnP-ULA and PnP-SGD under
easily verifiable conditions, with non-asymptotic accuracy bounds?

3 Are these Bayesian PnP methods and algorithms delivering solutions
that are meaningful from a non-subjective point of view?

We also present an alternative Bayesian strategy for inference with
data-driven priors derived from generative models (e.g., VAEs, GANs, etc.).
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This talk

For technical details please see:

1 R. Laumont, V. de Bortoli, A. Almansa, J. Delon, A. Durmus, and M.
Pereyra, ”Bayesian imaging using Plug and Play priors: when
Langevin meets Tweedie”, SIAM Journal on Imaging Sciences, 15 (2),
2022. https://doi.org/10.1137/21M1406349.

2 R. Laumont, V. de Bortoli, A. Almansa, J. Delon, A. Durmus, and M.
Pereyra, ”On Maximum-a-Posteriori estimation with Plug and Play
priors and stochastic gradient descent”, 2021. Preprint
https://hal.archives-ouvertes.fr/hal-03348735/.

3 M. Holden, M. Pereyra, K. Zygalakis, ”Bayesian Imaging with
Data-Driven Priors Encoded by Neural Networks”, SIAM Journal on
Imaging Sciences, 15 (2), 2022.
https://doi.org/10.1137/21M1406313.
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The oracle Bayesian model

We analyse Bayesian models with data-driven priors in an M-complete
modelling framework:

There exists a true - albeit unknown - marginal distribution for x and
posterior distribution for (x∣y = y).

Basing inferences on these oracle models is theoretically optimal.

We henceforth denote this optimal prior distribution by µ. When µ
admits a density w.r.t. the Leb. measure on Rd , we denote it by p⋆.

In that case, the posterior for x ∣y has density

p⋆(x ∣y) =
p(y ∣x)p⋆(x)

∫Rd p(y ∣x̃)p⋆(x̃)dx̃
.
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The oracle Bayesian model

We analyse Bayesian models with data-driven priors in an M-complete
modelling framework:

In this conceptual construction, µ naturally depends on the
application.

In problems where there is training data {x ′i }
M
i=1 available, we regard

{x ′i }
M
i=1 as a sample from µ.

For presentation simplicity, we henceforth assume that p⋆ exists.
However, our results hold even this is not the case.

This is important to provide robustness to situations where p⋆ is
nearly degenerate or improper (e.g., manifold hypothesis).
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The oracle Bayesian model

We cannot verify that p⋆ is proper and differentiable, with
x ↦ ∇ log p⋆(x ∣y) Lipschitz. Problematic for ULA and SGD.

Let ϵ > 0. To guarantee that gradient algorithms are sensible, we
introduce the regularised approximation µϵ of µ with density

p⋆ϵ (x) = (2πϵ)−d/2 ∫Rd exp [−∥x − x̃∥22/(2ϵ)]p
⋆(x̃)dx̃ .

By involving the likelihood p(y ∣x), we derive the regularised posterior

p⋆ϵ (x ∣y) =
p(y ∣x)p⋆ϵ (x)

∫Rd p(y ∣x̃)p⋆ϵ (x̃)dx̃
.
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The oracle Bayesian model

Laumont et al. (2021a) establishes that, under mild and easily verifiable
conditions on p(y ∣x), the following holds:

1 The regularised densities p⋆ϵ (x) and p⋆ϵ (x ∣y) are proper and smooth,
but not necessarily Lipschitz differentiable.

2 The approximation error w.r.t. the oracle models p⋆(x) and posterior
p⋆(x ∣y) is controlled by ϵ and vanishes as ϵ→ 0.

Guaranteeing that x ↦ ∇ log p⋆ϵ (x ∣y) is Lipschitz continuous requires an
additional assumption.
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The oracle MMSE denoiser

To study ∇ log p⋆ϵ (x ∣y) and rigorously derive PnP Bayesian methods,
we introduce the oracle MMSE denoiser:

D⋆ϵ (x) = (2πϵ)−d/2 ∫Rd x̃ exp [−∥x − x̃∥2/(2ϵ)]p⋆(x̃)dx̃ ,

to recover an image x ∼ µ from a noisy observation xϵ ∼ N (x , ϵId).

From Tweedie’s identity, the gradient

ϵ∇ log p⋆ϵ (x) = D
⋆
ϵ (x) − x .

Laumont et al. (2021a) establishes that ∇ log p⋆ϵ (x) is Lipschitz when
the denoiser D⋆ϵ is guaranteed to achieve a finite MSE. This is a
natural assumption given that D⋆ϵ is the MMSE Bayesian estimator.
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The oracle Bayesian model

Moreover, under mild assumptions on the likelihood p(y ∣x), the
posterior p⋆ϵ (x ∣y) is well posed in the sense of Hadamard.

This implies that key quantities computed from p⋆ϵ (x ∣y) are stable
w.r.t perturbations of y .

We can then easily establish the convergence of gradient-based
computation algorithms for p⋆ϵ (x ∣y) based on oracle denoiser D⋆ϵ .
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PnP Bayesian computation algorithms

Generic denoisers Dϵ, such as neural networks, are not usually
gradient mappings.

As a result, PnP-ULA and PnP-SGD algorithms implemented with Dϵ

are not related to gradient flows. This makes their analysis difficult.

We focus on deep neural network denoisers that are, by construction,
Lipschitz continuous, and which seek to approximate D⋆ϵ .

Dϵ’s Lipschitz constant is controlled during training by spectral
normalisation.

We establish convergence results and characterise accuracy w.r.t. the
oracle models - the key factor is how well Dϵ approximates D⋆ϵ .
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PnP Unadjusted Langevin Algorithm

First, Laumont et al. (2021a) establishes that PnP-ULA below
convergences geometrically fast to a neighbourhood of p⋆ϵ (x ∣y):

PnP-ULA ∶ Xk+1 =Xk + δk∇ log p(y ∣Xk) +
δk
ϵ (Dϵ(Xk) −Xk)

+
δk
λ (ΠC(Xk) −Xk) +

√
2δkZk+1 .

Π(⋅) is the projection operator, C ⊂ Rd is any large compact set, and
λ controls the target’s far-tail behaviour.

The accuracy depends on the magnitude of the error between D⋆ϵ and
Dϵ within an 0,R-ℓ2 ball, as well as on the algorithm parameters.

Under additional assumptions, we can establish convergence to a
neighbourhood of p⋆(x ∣y).
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PnP Stochastic Gradient Descent

Laumont et al. (2021b) establishes that any stable sequence

PnP-SGD ∶ Xk+1 = Xk + δk∇ log p(y ∣Xk)+
δk
ϵ (Dϵ(Xk) −Xk)+ δkZk+1 ,

converges to a neighbourhood of the set of critical points

S = {x ∶ ∇ log p⋆ϵ (x ∣y) = 0)} .

Again, the accuracy depends on the magnitude of the error between
D⋆ϵ and Dϵ, as well as on the algorithm parameters.
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Problem setup

Forward model: y = Ax +w where w ∼ N (0, σ2Id) with σ = 1/255.

Deblurring: A encodes a box filter of size 9 × 9 pixels.

Inpainting: A is a mask operator hidding 80% of the image pixels.

Clean images:

Simpson. Cameraman. Traffic.
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Algorithm parameters

Comparison with the provably convergent PnP-ADMM algorithm of

where Dϵ is a spectrally normalised DnCNN (neural network) denoiser
trained such that (Dϵ − Id) is L-Lipschitz with L < 1, with
ϵdeb. = (5/255)

2 and ϵinp. = (40/255)
2.

For meaningful comparison, we use the same denoiser and set
ϵ = (5/255)2, C = [−1,2]d , and λ for geometric convergence.

MC estimates calculated from a 1-in-2500 thinned ULA Markov chain.

n nburn−in δ Initialization

PnP-ULA 2.5e7 2.5e6 δmax/3 y
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Deblurring & Inpainting
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Deblurring estimation results
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Inpainting estimation results
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Uncertainty visualisation (deblurring & Inpainting)
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Generative modelling

We now focus on an alternative to PnP Bayesian inference based on deep
generative models (e.g., VAEs, GANs). Again, our aim is to explore
foundational questions and demonstrate the approach:

1 Again, let {x ′i }
M
i=1 be a training sample from the true prior µ.

2 We adopt a manifold hypothesis and suppose that x takes values
close to an unknown p-dimensional submanifold of Rd .

3 To estimate the manifold, we introduce a latent r.v. z on Rp, with
p ≪ d , and a mapping νθ ∶ Rp ↦ Rd , such that the push-forward
measure of z ∼ N (0, Ip) under νθ is close to {x ′i }

M
i=1 (in dist.).

4 We implement νθ as a neural network. We can learn νθ from {x ′i }
M
i=1

by using, e.g., a VAE, a GAN, or a flow approach. We use VAEs.
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Toy example - Rosenbrock distribution
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x 2
Left: training data from the two-dimensional Rosenbrock distribution. Right:
push-forward of z ∼ N (0, Ip) under νθ as implemented by a VAE, with p = 1.
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Posterior distributions for generative priors

With z and νθ, we have the likelihood p(y ∣z) = p(y ∣x = νθ(z)).

We use Bayes’ theorem to derive the posterior for z∣y = y

p(z ∣y) =
p(y ∣x = νθ(z))p(z)

∫Rp p(y ∣z̃)p(z̃)dz̃
,

Pushing (z∣y = y) under νθ(z) leads to the posterior for (x∣y = y),
which supported on a manifold and does not have a density.

This provides a different approximation to the oracle p⋆(x ∣y).

Holden et al. (2022) establishes that (z∣y = y) and (x∣y = y) are
well-posed in the sense of Hadamard and have finite moments.
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Illustrative experiments

We illustrate the proposed approach with the MNIST dataset.

We perform the following advanced inferences:
1 Identify the latent dimension p.
2 Perform MMSE inference in challenging image denoising, inpainting,

and deblurring experiments.
3 Adopt a likelihood-ratio test based on the statistic log p(y) to detect

out-of-sample observations that should not be analysed with the
Bayesian model.

4 Assess the frequentist accuracy of the Bayesian probabilities reported
by the model.

We report comparisons with MAP estimation under the same model,
and with PnP-ADMM by using a DnCNN denoiser.
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Identification of manifold dimension p

Figure: Trace of sample covariance of νθ(xi) across all test images. The amount
of information encoded by the prior stabilises for p ≈ 12, additional dimensions do
not significantly increase the amount of prior information encoded .
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Denoising

True Image

Observation
σ = 0.1 σ = 0.25 σ = 1.0 σ = 0.1 σ = 0.25 σ = 1.0

NNET
27.81/0.9925.57/0.9417.22/0.72 27.52/00.9923.00/0.9714.85/0.75

MAP
25.06/0.8724.16/0.8716.87/0.72 23.69/0.91 21.50/0.9215.88/0.81

MMSE (Ours)
24.99/0.9223.99/0.9117.58/0.82 21.94/0.96 21.85/0.9618.74/0.81
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Inpainting

True Image

Observation
σ = 0.025 σ = 0.1 σ = 0.25 σ = 0.025 σ = 0.1 σ = 0.25

PnP ADMM
19.90/0.7618.68/0.7617.58/0.69 22.19/0.7622.54/0.7720.80/0.73

MAP
19.01/0.8414.85/0.6514.79/0.58 24.26/0.9422.20/0.8814.22/0.62

MMSE (Ours)
21.36/0.9120.47/0.8918.54/0.83 24.88/0.9624.39/0.9520.08/0.86
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Deconvolution

True Image

Observation
σ = 0.025 σ = 0.1 σ = 0.25 σ = 0.025 σ = 0.1 σ = 0.25

PnP ADMM
28.58/0.9620.73/0.9014.47/0.71 21.28/0.9416.08/0.7812.97/0.57

MAP
27.81/0.9723.17/0.9315.20/0.70 22.82/0.9421.46/0.9214.92/0.68

MMSE (Ours)
28.07/0.9825.08/0.9624.41/0.95 22.64/0.9521.21/0.9417.57/0.78
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Likelihood ratio test for out-of-distribution detection
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Figure: Histograms of marginal likelihoods for image denoising, inpainting and
deblurring experiments. Out-of-sample detection powers for notMNIST of 99.6%,
88.5% and 99.8% respectively.

content...
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Coverage test: frequentist accur. of Bayesian probabilities
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Figure: Denoising
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Figure: Inpainting
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Conditional generative priors

Despite their success in computer vision, scaling generative models to
large inference problems reliably is difficult because of mode collapse,
spurious modes, or other sources of bias.

To reduce the difficulty of the machine learning problem, we consider
a conditional generative model x = νuθ (z), z ∼ N (0, Ip), that models
the distribution of x given some additional r.v. u.

For this construction to be useful, u should have low uncertainty
given y .
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Conditional generative priors

For example, we let u denote a low resolution version of x, and
implement νuθ by using a normalising flow for image super-resolution.

This leads to the model

p(z ∣y ,u) =
p(y ∣z ,u)p(z)

p(y ∣u)
,

with p(y ∣z ,u) = p(y ∣x = νuθ (z)) and p(y ∣u) = ∫Rp p(y ∣z̃ ,u)p(z̃)dz̃ .
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Empirical Bayesian imaging with conditional generative
priors

We accurately estimate u⋆ from y by maximum marginal likelihood
estimation:

û = argmax
µ

pθ(y ∣u) .

Adopting an empirical Bayesian strategy, we perform inference on
(x∣y = y ,u = û) by using

p(z ∣y , û) =
p(y ∣z , û)p(z)

p(y ∣û)
,

and pushing (z∣y = y ,u = û) to (x∣y = y ,u = û) by using νuθ .
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Bayesian computation

A simple algorithm to compute û probabilities and expectations w.r.t.
p(z ∣y , û) is the Stochastic Approximation Proximal Gradient scheme

Zk+1 = Zk + δk∇z log p(y ∣Zk ,uk) + δk∇z log p(Zk) +
√
2δkZk+1 ,

and
uk+1 = ΠU[uk + γk∇u log p(Zk+1∣y ,uk)] ,

where Zk+1 ∼ N (0, Id), (δk)k∈N and (γk)k∈N are sequences of
step-sizes, and ΠU denotes the Euclidean projection onto the set of
admissible values for u.

This SAPG is reasonably well understood and provably convergent
under easily verifiable conditions on p(z ∣y). See, e.g.,
https://doi.org/10.1007/s11222-020-09986-y and
https://doi.org/10.1137/20M1339829 for details.
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Illustrative example - Image deblurring

We compare the MMSE estimator obtained with the proposed method and
the MAP-style estimator obtained from PnP-ADMM, by using a DnCNN
end-to-end denoising prior, on an image deblurring problem.

x⋆ y PnP-ADMM Proposed

Figure: Image deblurring experiment: 9 × 9 uniform blur, σ = 10.
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Illustrative example - Image pan-sharpening

We seek to recover x⋆ from two noisy linear observations y1 and y2, one
with spectral fine details and the other with spatial fine detail.

y1 y2

Proposed (31.5dB) PnP ADMM (28.5dB) x⋆
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Conclusion

We have studied theory, methods, and algorithms for performing
Bayesian inference with data-driven priors encoded by neural networks.

We rooted our discussion in the Bayesian M-complete paradigm that
views PnP models as approximations of a regularised oracle model.

We have considered PnP and generative strategies and established
that the Bayesian models involved are well-posed under mild
assumptions on the likelihood.

These conditions are satisfied by Gaussian linear observation models,
for example.
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Conclusion

We studied the PnP ULA and SGD algorithms and provided detailed
convergence guarantees under easily verifiable and realistic conditions.

The provided theory does not require the denoiser to be a maximally
monotone operator, e.g., to be a gradient or proximal operator.

We also studied the estimation error involved in using implementable
PnP algorithms instead of the oracle model.

Bayesian model with generative priors rely on MCMC computation on
the latent space, and on automatic differentiation to compute
gradients. Standard ULA results apply.

Thank you!
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